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ABSTRACT 

In this work the Markov operators on the space of 2×2 matrices with p-order are 

studied. In this case the general form of the Markov’s operators is found. Sufficient 
conditions for an operator to be Markov in this spaces given. The regularity, accuracy 
and periodicity of the Markov’s operator is investigated.  
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INTRODUCTION 

A Markov chain on matrix spaces is an analog of a classical Markov 
chain with finite number of states [1]. It is known [2], that the statistical 

model of the quantum mechanics can be constructed on the base of a von 

Neumann algebra which is the algebra of linear bounded operators in a 

Hilbert space.  
 

It appears, problems of probability theory can be considered on non-

algebraic structures, for example, on ordered normed spaces [3].  
 

It is known, that a Hermitian matrix is positively defined if it is the 

square of another Hermitian matrix or eigenvalues of the matrix positive 
numbers.  

 

In [4], it is given a new definition of positively definition for a 2 2×  

Hermitian matrix named p - positively defined, for 1p > ,  which is not 

coordinated with an algebraic structure at 2p ≠ .  That is there exists a 

Hermitian matrix, the square of which is not p -positively defined. A matrix 

space with the p -order isn’t a normed algebra with respect to p -order 

norm. The p -order norm coincides with the operator norm in the case of 
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2p = .  The space of 2 2×  Hermitian matrices is an order-unit space (see 

definition in [5]) with the p -order.  

 

Let 2 ( )M C  be the algebra of complex 2 2×  matrices. We designate the set 

of Hermitian matrices as 2 ( )
sa

M C .  An element T  of 2 ( )
sa

M C  has the form 

a b ic
T

b ic d

+ 
= . 

− 
  

 

Definition 1. Let 1p > .  The following numbers  

1

1 2

1
2 2

2

pp p pa d b c a dλ
 

  
  ,   

 

= + ± | | + | | + | − |  

are said to be p -eigenvalues of the matrix T .   

 

The numbers 1,2λ are studied in details in [4] and it was shown that if 2p = ,  

these numbers coincide with usual eigenvalues of the matrix T .   

 

Definition 2. A matrix 2 ( )
sa

T M C∈  is called p -positively defined if 

1 2 0λ , ≥ .  We’ll write in this case 
p

T θ≥  where θ  is the zero-matrix.  

 

If T is a p -positively defined matrix then it is obvious that 0a ≥ ,  0d ≥ .   

 

We say that 
p

T S≥  for 2 ( )
sa

T S M C, ∈  if 
p

T S θ− ≥ .  We designate the set 

of p -positively defined matrices as 
p

M
+

, spaces 2 ( )
sa

M C  with p -order as 

2
A ( )

p sa
M C= .  

 

Analogously to [4], one can show that 
p

M
+

 is the generating cone in the 

space 2 ( )
sa

M C .  The unit matrix E  will be p -order unit in 
2
( )

p sa
M C  and 

the following norm  

 
11

2 2
2

pp p p

p
T a d b c a d

 
  
    

 

= | + | + | | + | | + | − | ,  

 

coincides with the p -order norm in 2 ( )
sa

M C .  
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In fact, for a nonnegative number λ the inequalities 
p p

E T Eλ λ− ≤ ≤  means  

 

1 0 1 0
.

0 1 0 1
p p

a b ic

b ic d
λ λ

+     
− ≤ ≤     

−     
 

 

Consider the inequality: p

a b ic

b ic d

λ
θ

λ

− + 
≤ 

− − 
.  

 

By definition 1,
1

2 2 2 0
pp p pa d b c a dλ  

 
 

+ − ± | | + | | + | − | ≤ .  

 

Hence,  
11

2 2 .
2

pp p pa d b c a dλ
 

  
    

 

≥ + ± | | + | | + | − |   

 

Analogous, the inequality p

a b ic

b ic d

λ
θ

λ

+ + 
≥ 

− + 
 follows 

1

2 2 2 0
pp p pa d b c a dλ  

 
 

+ + ± | | +| | + | − | ≥ . 

Hence,  
11

2 2 .
2

pp p pa d b c a dλ
 

  
    

 

≥ − − ± | | + | | + | − |  So, we has 

11
2 2 .

2

pp p pa d b c a dλ
 

  
    

 

≥ | + | + | | + | | + | − |  The infimum of these 

numbers is said to be the order norm of the matrix T [5]. 

 

Remark 1. It is known the Lp – norm of a matrix is defined with the help of 

the trace of the matrix. The introduced norm and the Lp – norm are not 
connected among themselves. 

 

Remark 2. The space 2 ( )
sa

M C  is not a normed algebra with respect to this 

norm since the axiom of normed algebra: TS T S≤ i  is not valid.  

For example, consider the matrix 
1 4

4 3
T

 
=  
 

. Let take 3p = . Then 

3

3
2 65T = + ,  

2 3

3
21 4 65T = +  and 

22

33
T T> ,  but this contradicts the 

axiom 
3 3 3

TS T S≤ ⋅  of normed algebra. 
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The matrix 
3

3

1 7

7 3
T

 
=  
 
 

 is 3-positively defined, but it is not positively 

defined in the usual sense. Let 
2
( )

p sa
A M C= . 

Definition 3. A linear operator P A A: →  is said to be Markov operator if it 

possesses the following properties:  

(i) ( )P E E= , here E  is the unit matrix: 
1 0

0 1
E

 
= . 
 

 

(ii) ( )
p

P T θ≥  if 
p

T θ≥ .   

 

 

MAIN RESULTS 

It is not difficult to see that a composition of Markov operators is a Markov 
operator.  

 

Consider examples. 

 

1. 
0

0

a b ic a
P

b ic d d

+   
: → .   

−   
   

  

 2. 
2

2

a d
b ic

a b ic
P

b ic d a d
b ic

+ 
+ + 

: → .  
− +   − 

 

  

 

3. Let t,  t′,  t′′,  s,  s′,  s′′  be such real numbers that 1p p pt t t′ ′′| | + | | + | | = ,  

1q q qs s s′ ′′| | + | | + | | = ,  where 1p ≥ ,  1q ≥  and 1 1 1
p q

+ =  satisfying the 

condition 1ts t s t s′ ′ ′′ ′′+ + = .   

 

Set  :
a b ic

P
b ic d

+ 
 

− 
 

(( ) ( )) (( ) 2( ))( )1

(( ) 2( ))( ) (( ) 2( ) )2

a d a d s bs cs t a d s bs cs t it

a d s bs cs t it a d a d s bs cs t

′ ′′ ′ ′′ ′ ′′+ + − + + − + + + 
→ . ′ ′′ ′ ′′ ′ ′′− + + − + − − + + 
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The Gelder inequality follows the p - positively defined of this operator.  

 

Note that a Markov operator P  can be represented as a 4 4× -matrix.  

 

Theorem 1. Matrix of the Markov operator P  has the form:  
 

11 12 13 13

21 22 23 23

31 31 33 34

31 31 34 33

p p p p

p p p p
P

p p p p

p p p p

 
 
 
 
 
 
 
 
 
 
 

=
−

−

                                                                  (1) 

 

with conditions 0
ij

p ≥ ,  1 2i j, = , ,  11 12 1p p+ = ,  21 22 1p p+ =  and  

31 11 21 11 21 12 22 12 222 min{ }p p p p pp p p p p p p p p| | ≤ | + | − | − | ,| + | − | − | .  

 

Proof. We consider in the 2 ( )M C  a standard basis  

1 2

1 0 0 0

0 0 0 1
e e

   
= , = ,   
   

 3 4

0 1 0 0

0 0 1 0
e e

   
= , = .   
   

 Let 
4

1( )
ij i j

p , =  be the 

matrix of the operator P.  We are confined to the case when coefficients 
ij

p  

are real.  

 

Hence, 1 p
e θ≥ .  By the property (ii) of a Markov operator, 1 p

Pe θ≥ .  On the 

other hand, 1 11 1 21 2 31 3 41 4Pe p e p e p e p e= + + + .  So,  

 

11 31

1

41 21

p p
Pe

p p

 
 
 
  
 

=  

is p -positively defined, i.e.  
1

31 41 11 21 11 21 31 11 210 0 2
pp p

p p p p p p p p p 
 
 

= , ≥ , ≥ , + ≥ | | + | − | .           (2) 

 

Analogously we obtain with the help of 2e   
1

32 42 12 22 12 22 32 12 220 0 2
pp p

p p p p p p p p p 
 
 

= , ≥ , ≥ , + ≥ | | + | − | .          (3) 

 

Further, the unit matrix E  can be written in the form: 1 2E e e= + .  Hence,  

 

1 2 11 12 1 21 22 2 31 32 3 41 42 4( ) ( ) ( ) ( ) ( )P E Pe Pe p p e p p e p p e p p e E= + = + + + + + + + = .

 



 M.A. Berdikulov 

140                                     Malaysian Journal of Mathematical Sciences                                              

 

We have  

  

11 12 21 22 31 32 41 42 32 311 1 0 0 i ep p p p p p p p p p+ = , + = , + = , + = , . . = − .            (4) 

 

Since P  transfers a Hermitian matrix to a Hermitian one, the condition 

3 4( )Pe Pe∗ =  should be realized. It implies that 13 14p p= ,  43 34p p= ,  

33 44p p= ,  23 24p p= .  ∇ 

 

Remark 3. It is not difficult to see that for p=2 formulas (2), (3) and (4) 

coincide with the correspondent formulas (2), (3) and (6) of the work [1] for 

2×2 matrices. 
 

Limit behavior investigation of the iterations 
n

P  for the given operator P  at 

n → ∞  is one of the basic problems in Markov operators theory. The 

following result takes place.  

 

Theorem 2. Let P  be a Markov operator in A.  Then  

 

( )i   ( )
p p

P T T≤  for any T A∈ ;   

( )ii   for any T A∈ ,  the sequence ( )nP T ,  1 2n …= , ,  is bounded by the 

norm;  

( )iii   matrix elements 
n

ij
p  of the operator nP ,  1 2n …= , ,  are bounded in 

the all;  

( )iv   if Cλ ∈  is an eigenvalue of the operator P  then 1λ| |≤ .   

 

Proof. ( )i   Let T A∈ .  Since E  is the p -order unit, then  
 

p pp p
T E T T E− ≤ ≤ .  

 

If we applies the operator P  to these inequalities, then we 
obtain  

 

( )
p pp p

T E P T T E− ≤ ≤ .  

 

It is means that ( )
p p

P T T≤ .   

 

( )ii  Since the operator 
n

P  is a Markov operator, then ( )i  implies 

that ( )n

pp
P T T≤  for all 1 2n …= , ,  .  
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( )iii   follows ( )iii .  

 

( )iv  Let T A∈ ,  T θ≠ ,  Cλ ∈ ,  ( )P T Tλ= .  Then ( )n nP T Tλ= ,  

1 2n …= , , . Hence, ( )n n

pp
P T Tλ=| | .  As 0

p
T ≠  and the 

sequence ( )n

p
P T ,  1 2n …= , , ,  is bounded, 1λ| |≤ .    

 

Definition 4. We say that a Markov operator P  given on A  is regular if 

there exists a state µ  on A  such  

 

lim ( ) ( )n

n
P T T Eµ

→∞
=  

 
for any T A∈ .  Here, the limit is taken by the p -order norm.  

 

Theorem 3. Let P  be a Markov operator in A.  The operator P  is regular if 

and only if eigenvalues of this operator satisfy the condition 1 1λ = ,  1
i

λ| |< ,  

2 3 4i = , , .   

 
As matrix positively definition doesn’t play any role by proof of this 

theorem, one can prove it similar to theorem 1 in [1].  

 
Definition 5. A Markov operator P  is said to be accurate if the limits  

 

lim ( )n

n
P T

→∞
 

exists for any T A∈ .   

 

Theorem 4. Let P  be a Markov operator in A.  The operator P  is accurate 

if and only if eigenvalues of this operator satisfy the conditions 1 1λ = ,  

1
i

λ| |≤ ,  2 3 4i = , , .   

 

Proof of this theorem is analogous to proof of theorem 2 in [1].  

 

Definition 6. A Markov operator P  is called periodical with the period 

1d >  if  

a) 
d

P  is accurate;  

b) the number d  is the least among the integers for which the 

condition a) holds.  



 M.A. Berdikulov 

142                                     Malaysian Journal of Mathematical Sciences                                              

 

Corollary 1. A Markov operator P  is periodical with the period d  if and 

only if  

a’)  all the eigenvalues of the operator P , modulus of which are 1, 

are roots of the power d  from unit;  

b’) the number d  is the least among the integers for which the 

condition a’) holds.  
 

Markov operators given in examples 1 and 2 are periodical with the period 2 

and the matrices corresponding to them operators have the following form  
 
 

1 1
0 0

1 0 0 0 2 2

0 1 0 0 1 1
0 0and

2 20 0 0 0

0 0 1 00 0 0 0

0 0 0 1

 
  
  
   .  
  
  
 
 

 

 

We give sufficient conditions at which a matrix in the form (1) determines a 

Markov operator in 
2
( )

p sa
A M C= .   

 

Matrices  

 

11

12

t t
U

t t

′+ 
= , ′ − 

                                                                      (5) 

 

where t,  t′  are real numbers such, that 1p pt t′| | + | | = ,  are basic matrices in 
2
( )

p sa
M C  [4].  

 

It is sufficient for an operator P  to be Markov operator that for any matrix 

U  in the form (5), the matrix  
 

( )P U  

 

11 12 13 31 31 33 34

31 31 33 34 21 22 23

(1 ) (1 ) 2 (1 ) (1 ) ( )1

(1 ) (1 ) ( ) (1 ) (1 ) 22

t p t p p t t p t p p p t

t p t p p p t t p t p p t

′ ′+ + − + + − − + + 
=  ′ ′+ − − + + + + − + 
 

11 12 13 31 33 34

31 33 34 21 22 23

1 ( ) 2 2 ( )1

2 ( ) 1 ( ) 22

p p t p t p t p p t

p t p p t p p t p t

′ ′+ − + + + 
=  ′ ′+ + + − + 

, 



 Markov operators on Hermitian 2×2 matrix spaces with p-order  

                                              Malaysian Journal of Mathematical Sciences                                             143 

 

is p -positively determined. As ( )
p

P U θ≥ ,  we have  

11 12 131 ( ) 2 0p p t p t′+ − + ≥ ,                                                                  (6) 

 

21 22 231 ( ) 2 0p p t p t′+ − + ≥ ,                                                                 (7) 

 

11 12 21 22 13 23(2 ( ) 2( ) ) pp p p p t p p t′+ − + − + + ≥  

 

31 33 34 11 12 21 22 13 234 2( ) ( ) 2( )p pp t p p t p p p p t p p t′ ′| + + | + | − − + + − | .  

 

Since t  and t′  are arbitrary, inequalities (6), (7) are equivalent to the 

following inequalities  

 

11 12 13 21 22 23( ) 2 1 ( ) 2 1p p t p t p p t p t′ ′| − + |≤ , | − + |≤ ,                             (8) 

 
respectively. They respectively follow by the Gelder inequality from the 

following inequalities:  

 

11 12 13 21 22 232 1 2 1q q q qp p p p p p| − | + | | ≤ , | − | + | | ≤ .                            (9)                                   

 

Here q  is the number determined from the equality 
1 1

1
p q

+ = .  

Analogously, the inequality  

 

11 12 21 22 13 23(2 ( ) 2( ) ) pp p p p t p p t′+ − + − + + ≥  

                   (10) 

31 33 34 11 12 21 22 13 234 2 2(
p p

q q q q
p p p p p p p p p   

   
   
| | + | + | + | − − + | + | − |  

  

follows inequality (8).  
 

Arbitrariness of t  and t′ , and equalities 11 12 1p p+ = ,  21 22 1p p+ =  follow  

 

13 23 31 33 34

12 21 13 23

(1 ) ( 2 ( )

( 1 )

p q q p

q q p

p p p p p

p p p p

+ + ≥ | | + | + |

+ | − − | + | − | ,
                                               (11) 

 

12 22 31 33 34

12 21 13 23

(2 ) ( 2 ( )

( 1 ) .

p q q p

q q p

p p p p p

p p p p

− − ≥ | | + | + |

+ | − − | + | − |
                                               (12) 
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Thus, we have proved the following  

 
Theorem 5. Let P  be a linear operator in A  determined by the matrix (1). 

If elements of P  satisfy the relations (9), (11), (12), then P  is Markov 

operator. Moreover, the following result takes place.  

 

Theorem 6. If elements of P  satisfy the strict version of the inequalities (9), 

(11) and (13) then P  is a regular Markov operator.  

 
Let P  be a Markov operator determined by the matrix (1). Consider the 

characteristic equation  

( ) 0
ij ij

det p λδ− = .  

Add to the first column of the determinant ( )
ij ij

det p λδ−  the second one. 

Then  

12 13 13

22 23 23

31 3433

31 34 33

1

1
0

0

0

p p p

p p p

p p p

p p p

λ

λ λ

λ

λ

−

− −
= ,

− −

− −

 

 
hence one can obtain after non-complicated transformations  

 

 33 34 22 12 33 34 31 23 13(1 )( ))[( )( ) 2 ( )] 0p p p p p p p p pλ λ λ λ− − − − − + − + − = .  

 

Suppose that even if one form the two conditions  
 

23 13 31 0p p p= , =  
 

holds. In this case, eigenvalues of the operator P  have the following form:  
 

1 2 22 12 3 4 33 341 p p p pλ λ λ ,= , = − , = ± .  

 

By theorem 2, 1
i

λ| |≤ ,  1 2 3 4i = , , , .  Therefore only the following cases are 

possible:  

1. 22 12 1p p| − |< ,  33 34 1p p| ± |< .  By theorem 3, the operator P  is 

regular.  

2. 22 12 1p p− ≠ − ,  33 34 1p p± ≠ − .  By theorem 4, the operator P  is 

accurate.  

3.  Even if one from the two numbers 22 12p p− ,  33 34p p±  equals 1. In 

this case by corollary 1, the operator P  is periodical of the period 2.  
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Remark 4. The last results are based only on the view of elements a Markov 

operator. They coincide with results of the work [1] and are given here for 
compactness of results. 
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